This website uses cookies to store information on your computer. Some of these cookies are used for visitor analysis, others are essential to making our site function properly and improve the user experience. By using this site, you consent to the placement of these cookies. Click Accept to consent and dismiss this message or Deny to leave this website. Read our Privacy Statement for more.
News & Press: LATEST NEWS

Three obstacles are slowing space sensors for hypersonic threats

Wednesday, April 8, 2020   (0 Comments)

By Melanie Marlowe  |  April 8, 2020  |  C4ISRNET


A space sensor layer represents a central component of both reinvigorated attention in space operations and the reality of renewed great power competition. Unfortunately, the current pace for acquiring it is something less than the speed of relevance. Despite frequent statements of support from the Pentagon, its realization faces architectural, budgetary and institutional impediments.

The emergence of hypersonic missiles is an important feature of renewed strategic competition. Over the past 15 years, Russia and China invested in these new kinds of strike systems, which pose a different kind of threat to U.S forward forces, bases and power projection. Hypersonic glide vehicles and scramjet cruise missiles are designed to circumvent both intercept by missile defenses and detection by satellites that support strategic warning. READ MORE...

With over 13,000 members internationally, the Association of Old Crows is an organization for individuals who have common interests in Electronic Warfare (EW), Electromagnetic Spectrum Management Operations, Cyber Electromagnetic Activities (CEMA), Information Operations (IO), and other information related capabilities. The Association of Old Crows provides a means of connecting members and organizations nationally and internationally across government, defense, industry, and academia to promote the exchange of ideas and information, and provides a platform to recognize advances and contributions in these fields.